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In this paper, we propose the non-linear Born–Infeld scalar field and canonical scalar
field dark energy models with the potential λ

4 (φ2 − σ 2)2 + V0, which admits late time
de Sitter attractor solution. The attractor solution corresponds to an equation of state
ωφ → −1 and a cosmic density parameter �φ → 1, which are important features for a
dark energy model that can meet the current observations. dark energy; canonical scalar
field, non-linear Born–Infeld type scalar field, attractor solution.
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1. INTRODUCTION

Measurements of the redshift-luminosity distance relation using high red-
shift type Ia supernovas combined with cosmic microwave background (CMB)
and galaxy clusters data appear to suggest that the present Universe is flat and
undergoing a period of accelerated expansion (Alverson et al., 2002; Bennett
et al., 2003; Netterfield et al., 2002; Perlmuter et al., 1999; Riess et al., 1998;
Tonry et al., 2003), with the energy density splits into two main contributions,
�matter ≈ 1/3 and �� = 2/3. The roughly two-thirds of the energy density in
our Universe results from a kind of dark energy that has a negative pressure and
can drive the accelerating expansion. Many candidates for dark energy have been
proposed so far to fit the current observations. Among these models, the most
typical ones are the cosmological constant and a time varying scalar field with
positive or negative kinetic energy evolving in a specific potential, referred to
them as “quintessence” (Caldwell et al., 1998; Coble et al., 1997; Padmanabhan,
2003; Peebles and Ratra, 2003; Ratra and Peebles, 1988) or “phantom” (Caldwell,

1 Department of Physics, Shanghai University, Shanghai, P. R. China.
2 To whom correspondence should be addressed at Department of Physics, Shanghai University,

Shanghai 200444, P. R. China; e-mail: zhang78412@126.com.

1341
0020-7748/06/0700-1341/0 C© 2006 Springer Science+Business Media, Inc.



1342 Ke-Feng, Wei, and Hui-Qing

2002; Carroll et al., 2003; Hao and Li, 2003a; Singh et al., 2003). Successful
dark energy models also share some common features: (i) they should have an
effective equation of state ω < −1/3 (where ω = p/ρ, ä ∝ −(ρ + 3p)) so as to
accelerate the expansion of the universe at recent epoch; (ii) they should be negli-
gible comparing with radiation and matter in the early epoch of the universe so as
not to affect the primordial nucleosynthesis while dominating over the matter in
a recent epoch; and (iii) they should not be very sensitive to initial conditions so
as to alleviate fine-tuning problems. For the canonical scalar field model and non-
linear Born–Infeld type scalar field model, a great deal of effort has been made to
determine the appropriate potential V (φ) that could explain current cosmological
observations (Barreiro et al., 2000; Caldwell et al., 1998; Zlatev et al., 1999). In
this paper, we propose the potential as:

V (φ) = λ

4
(φ2 − σ 2)2 + V0 (1)

which has a nonvanishing minimum. The sufficient condition for the existence of
a viable cosmological model with a late time de Sitter attractor solution should be
that: the potential of the field has a nonvanishing minimum (Hao and Li, 2003b).
The dynamical system of the models admit late time de Sitter attractor solution,
which meet all the above three points.

The paper is organized as follows: In Section 2, a sufficient condition for
dark energy with a late time de Sitter attractor for the canonical scalar field model
is discussed. In Section 3, we construct the non-linear Born–Infeld scalar field
dark energy model and compare two models by numerical method. Section 4 is
summary.

2. DARK ENERGY MODEL WITH A CANONICAL SCALAR FIELD

In this section, we will study the case that the dark energy is mimicked
by a scalar field expressed by a canonical Lagrangian. We will work in the flat
Robertson-Walker metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (2)

The equation of motion for the scalar field with a canonical Lagrangian is

φ̈ + 3Hφ̇ + ∂V (φ)

∂φ
= 0 (3)

In order to gain more insight into the dynamical system, we introduce the
new dimensionless variables

x = φ

φ0
y = φ̇

φ2
0

N = ln a (4)
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Then the above equation can be rewritten as

dx

dN
= φ0y

H

dy

dN
= −3y − V ′(x)

φ3
0H

(5)

where the prime denotes the derivative with respect to x and H is a Hubble
parameter that could be rewritten as

H 2 = H 2
i E2(N ) (6)

where Hi denotes the Hubble parameter at an initial time. �M,i and �r,i are the
cosmic density parameters for matter and radiation at the initial time. We also
choose the initial scale factor ai = 1 and E(N ) is defined as

E(N ) =
[

k

3H 2
i

(
φ4

0y
2

2
+ V (x)

)
+ �M,ie

−3N + �r,ie
−4N

]1/2

(7)

where k = 8πG. At late time, N goes to be very large and the contribution from
matter and radiation in Eq. (7) becomes negligible comparing with the scalar field.
To see this more clearly, we take the example that when the equation of state of
the dark energy is constant ωφ must be less than −1/3 so as to accelerate the
expansion of the Universe. Thus the dark energy component will evolve with N as
�φe−3(1+ωφ )N , which dissipates slower than matter and radiation. So, at late time,
we will have

dx

dN
=

√
3

k

φ0y√
φ4

0y
2/2 + V (x)

dy

dN
= −3y −

√
3

k

V ′(x)

φ3
0

√
φ4

0y
2/2 + V (x)

(8)

The critical point of the above autonomous system is (xc, 0), where xc is
defined by V ′ (xc) = 0. Linearizing the Eq. (8) about the critical point, we will have

dx

dN
=

√
3

kV (xc)
φ0y

dy

dN
= −3y −

√
3

kV (xc)

V ′′(xc)x

φ3
0

(9)

The type of the critical point is determined by the eigenequation of system

λ2 + αλ + β = 0 (10)

where α = 3 and β = [3V ′′(xc)]/[kV (xc)φ2
0], the two eigenvalues are λ1,2 =

(−α ±
√

α2 − 4β)/2, For a positive potential V (x), if V ′′(xc) > 0, then the critical



1344 Ke-Feng, Wei, and Hui-Qing

Fig. 1. The attractor property of the system in the phase
plane. We can easily find that the system admits a at-
tractor solution. We choose xi = 2, yi = 0 (dotted line);
xi = 3, yi = 0 (dashed line); xi = 4, yi = 0 (solid line).

point is a stable node. This is to say that the dynamical system has a stable critical
point at the minimum of the potential. This critical point corresponds to a late time
attractor solution. These properties have been further confirmed by the numerical
analysis (Fig. 1). Next, let us read out the physical implications when the system
is at the attractor regime. The cosmic density parameter for the dark energy is

�φ = k
[
φ4

0y
2/2 + V (x)

]
3H 2

i E2(N )
(11)

and the equation of state of the scalar field is

ωφ = φ4
0y

2 − 2V (x)

φ4
0y

2 + 2V (x)
(12)

Clearly, from Eqs. (11) and (12), one can easily find that ωφ = −1 and �φ = 1
when the scalar field is dominant over the matter and radiation in the universe.

We choose a widely studied potential as Eq. (1). Substituting this potential
into Eq. (4), we obtain

dx

dN
= φ0y

Hi

[
k

3H 2
i

(
φ4

0y2

2 + λ
4

(
x2φ2

0 − σ 2
)2 + V0

)
+ �M,ie−3N + �r,ie−4N

]1/2

dy

dN
= −3y

− λφ0
(
x2φ2

0 − σ 2
)
x

φ3
0Hi

[
k

3H 2
i

(
φ4

0y2

2 + λ
4

(
x2φ2

0 − σ 2
)2 + V0

)
+ �M,ie−3N + �r,ie−4N

]1/2

(13)
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Fig. 2. The evolution of ω with respect to N. The equation
of state ω moves towards zero.

We choose kφ4
0/3H 2

i = 3 × 10−2, σ 2
0 /Hiφ0 = 10−5 and λ = 10−1 . We specify

starting point at the equipartition epoch (�M = �r = 0.5). The numerical results
with different initial conditions are plotted in Figs. 1–3.

After this stage, ω fast drops and begins to oscillate. The equation of state is
sufficiently negative and finally settles at −1. We choose same initial conditions
with Fig. 1.

Fig. 3. The evolution of density parameter � with respect
to N. Solid line is for scalar field, dotted line for matter
and dashed line for radiation. Since the parameters in the
potential will not affect the shape of the plot significantly,
we here plot for different initial xi and yi , which are same
with the Fig. 1. The curves show that the canonical scalar
field model has a wide range of initial conditions, which
alleviates the fine-tuning problems.
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3. DARK ENERGY MODEL WITH A NON-LINEAR BORN–INFELD
TYPE SCALAR FIELD

Non-linear Born–Infeld theory has been considered widely in string theory
and cosmology. In 1934 (Born and Infeld, 1934), Born and Infeld put forward a
theory of non-linear electromagnetic field to resolve the singularity in classical
electromagnetic dynamics. The lagrangian density is

LBI = b2

[
1 −

√
1 +

(
1

2b2

)
Fµγ Fµγ

]
(14)

In order to describe the process of meson multiple production connected with
strong field regime (Heisenberg, 1952, 1946), Heisenberg proposed the following
nonlinear scalar field lagrangian firstly

L = 1

η

[
1 − √

1 − ηgµγ φ,µφ,γ

]
(15)

This lagrangian density (Eq. (15)) possesses some interesting characteristics:
(i) it is exceptional in the sense that shock waves do not develop under smooth
or continuous (Taniuti, 1958), (ii) because nonlinearities have been introduced,
nonsingular scalar field solutions can be generated, (iii) if gµγ φ,µφ,γ � 1

η
, by

Taylor expansion, Eq. (15) approximates to the lagrangian of linear scalar field,

lim
η→0

L = 1

2
gµγ φ,µφ,γ (16)

the linear theory is recovered. H.P. de Oliveira has investigated qualitatively
the static and spherically symmetric solutions of this nonlinear scalar field (De
Oliveira, 1995). Especially, if the potential V (φ) equals to 1/η, we find that
pρ = −1/η2, which describes a Chaplygin gas.

We have proposed a dark energy model based on the lagrangian Eq. (15) in
literatures (Lu, 2005; Fang, 2005). We find that the universe of Born–Infeld scalar
field with a potential can undergo a phase of accelerating expansion. We have the
following lagrangian:

L = 1

η

[
1 −

√
1 − ηφ̇2

] − V (φ) (17)

The equation of motion for a scalar field with a Born–Infeld type Lagrangian
is

φ̈ + 3Hφ̇(1 − ηφ̇2) + V ′(φ)(1 − ηφ̇2)3/2 = 0 (18)
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Where the overdot represents the differentiation with respect to t and
the prime denotes the differentiation with respect to φ. The Energy-moment
tensor is

T µ
γ = − gµρφ,γ φ,ρ√

1 − ηgµγ φ,µφ,γ

− δµ
γ L (19)

From Eq. (19), we have

ρφ = T 0
0 = 1

η
√

1 − ηφ̇2
− 1

η
+ V (φ) (20)

pφ = −T i
i = 1

η
−

√
1 − ηφ̇2

η
− V (φ) (21)

The equation of state is

ωφ = pφ

ρφ

= −1 + ηφ̇2

1 + (ηV (φ) − 1)
√

1 − ηφ̇2
(22)

By introducing the new dimensionless variables (note that the field in
Born–Infeld Lagrangian has a different dimension from that in canonical
Lagrangian)

x = φ y = φ̇ N = ln a (23)

The equation of motion could be reduced to

dx

dN
= y

H

dy

dN
= −3y(1 − ηy2) − (1 − ηy2)3/2V ′(x)

H

(24)

Where H is the same as that defined by Eq. (6)

H 2 = H 2
i E2(N )

but with a different:

E(N ) =
[

k

3H 2
i

(
V (x) − 1

η
+ 1

η
√

1 − ηy2

)
+ �M,ie

−3N + �r, ie
−4N

]1/2

(25)
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Substituting the potential Eq. (1) into the Eqs. (24) and (25), we obtain:

dx

dN
= y

Hi

E−1(N )

dy

dN
= −3y(1 − ηy2) − (1 − ηy2)3/2λφ0

(
x2φ2

0 − σ 2
)
x

Hi

E−1(N )

E(N ) =
[

k

3H 2
i

(
λ
/
4(φ2 − σ 2)2 + V0 − 1

η
+ 1

η
√

1 − ηy2

)

+�M,ie
−3N + �r,ie

−4N

]1/2

(26)

where k = 8πG. In a similar fashion as in the previous section, we conclude
that the contribution from matter and radiation to the Hubble parameter become
negligible at late time. With the critical point (xc, 0) and V ′ (xc) = 0, one can
observe that the linearized autonomous system for the canonical scalar field is
quite similar to that of the Born–Infeld type scalar field. Thus we can conclude
that for positive potentials, which has a nonvanishing minimum , the Born–Infeld
type scalar model has a stable critical point, which corresponds to the de Sitter
attractor solution of the system.

We specify our starting point at the equipartition epoch, at which �M =
�r = 0.5 and take σ 2

0 /Hiφ0 = 10−6, λ = 1, k = 1. They are plotted in different
initial conditions.

As we know, when η → 0, the Non-linear Born–Infeld type scalar field model
comes back to canonical scalar field model. In order to see the nonlinear effect,
we plot the two models phase portraits in Figs. 8 and 9.

From the Figs. 8 and 9, we can see that the Non-linear Born–Infeld type
scalar field model has a same evolution with the canonical scalar field model at
the last, but the canonical scalar field has a obvious oscillation.

4. SUMMARY

So far, we have present the non-linear Born–Infeld scalar field and canonical
scalar field dark energy models with the potential λ

4 (φ2 − σ 2)2 + V0. From the
Figs. 1–3 and 6–9 we conclude that they admit a late time de Sitter attractor and
the attractor solution correspond to an equation of state ωφ → −1 and a cosmic
density parameter �φ → 1, which are important features for a dark energy model.
It can meet the current observations. From the Figs. 3 and 9 we can easily find
that at earlier epoch of universe the scalar field (ρφ) can be negligible compared
with radiation and matter, but in a very recent epoch the scalar field (ρφ) sur-
passes the matter and radiation density and becomes the dominant component.
With the evolution of time, the energy density of φ field slows to a crawl and
ωφ → −1 as �φ → 1 and the universe is driven into an accelerating phase. It
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Fig. 4. The evolution of scalar field with respect to N . Solid
lines is canonical scalar field model, dotted line and dashed
line for Non-linear Born–Infeld type scalar field model, dot-
ted line for η = 0.1, dashed line for η = 0.05.

is necessary to point out that the current observation date indicate that the cos-
mic density parameter of the dark energy is about �φ = 2/3 and the equation
of state is less than −0.82, therefore in the models analyzed in this paper, the
current universe is just on the way to the attractor. We plot the numerical results

Fig. 5. The evolution of the equation of state ω of the scalar
field with respect to N . Solid lines is canonical scalar field
model, dotted line and dashed line for Non-linear Born–Infeld
type scalar field model, dotted line for η = 0.1, dashed line
for η = 0.05.
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Fig. 6. Phase portrait of the model described by Eq. (26). Trajec-
tories starting anywhere in the phase space end up at the stable
critical point. We choose xi = 2.6, yi = 0 (solid line); xi = 3.0,
yi = 0 (dotted line); xi = 3.4, yi = 0 (dashed line).

with different initial conditions. The model will always tend to be stable. So we
can find the range of initial conditions is wide and it alleviates the fine tuning
problems. The difference of the two models is that: the canonical scalar field has
a obvious oscillation in the evolution of the scalar field and the equation of the
state ω.

Fig. 7. The evolution of the scalar field model by Eq. (26)
with respect to N in the presence of matter and radiation. We
choose xi = 10, yi = 0 (solid line); xi = 9, yi = 0 (dotted
line); xi = 8, yi = 0 (dashed line).
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Fig. 8. The evolution of the equation of state ω of the scalar
field described by Eq. (26). The equation of state ω also
starts from nearly −1, then quickly evolves to the regime of
lager than −1 but smaller than zero, turns back to execute the
damped oscillation, and reaches to −1 for ever, just like the
canonical scalar field dark energy model. We choose same
initial conditions with Fig. 6.

Fig. 9. The evolution of density parameter � with respect to N .
The solid line is for scalar field, dotted line for matter and dashed
line for radiation. Since the parameters in the potential will not
affect the shape of the plot significantly, we here plot for different
initial xi and yi , which are same with the Fig. 6.
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